Phase Shift

Sample sine sinusoidal as a function of x with an angular wave number and phase constant.

Sample sine sinusoidal as a function of x with an angular wave number and phase constant.

The determination of the phase constant is not unknowable magic. It is the result of some simple algebra. Let's look at the general form for a sinusoidal equation without the complication of a vertical shift.

y=Asin( kx+ φ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 da9iaadgeaciGGZbGaaiyAaiaac6gadaqadaqaaiaadUgacaWG4bGa ey4kaSIaeqOXdO2aaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaa aaaa@429D@

We can use the horizontal shift rule to predict the sign of the phase constant:

If the argument x of a function f is replaced by x − h , h > 0 , the graph of the new function y = f ( x − h ) is the graph of f shifted horizontally right h units. If the argument x of a function f is replaced by x + h , h > 0 , the graph of the new function y = f ( x + h ) is the graph of f shifted horizontally left h units.
— Sullivan and Sullivan, p. 246 [1]

From inspecting the figure above, we can tell that the amplitude, A, of the oscillation is 10 cm, and at x=0, the displacement, y = 5. From the horizontal shift rule, we expect the phase constant to be positive.

5=10sin( k0+ φ 0 ) 1 2 =sin( φ 0 ) sin 1 ( 1 2 )= φ 0 φ 0 = π 6  or 30° MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaacaaI1a Gaeyypa0JaaGymaiaaicdaciGGZbGaaiyAaiaac6gadaqadaqaaiaa dUgacqGHflY1caaIWaGaey4kaSIaeqOXdO2aaSbaaSqaaiaaicdaae qaaaGccaGLOaGaayzkaaaabaWaaSaaaeaacaaIXaaabaGaaGOmaaaa cqGH9aqpciGGZbGaaiyAaiaac6gadaqadaqaaiabeA8aQnaaBaaale aacaaIWaaabeaaaOGaayjkaiaawMcaaaqaaiGacohacaGGPbGaaiOB amaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaWaaSaaaeaaca aIXaaabaGaaGOmaaaaaiaawIcacaGLPaaacqGH9aqpcqaHgpGAdaWg aaWcbaGaaGimaaqabaaakeaacqaHgpGAdaWgaaWcbaGaaGimaaqaba GccqGH9aqpdaWcaaqaaiabec8aWbqaaiaaiAdaaaGaaeiiaiaab+ga caqGYbGaaeiiaiaaiodacaaIWaGaeyiSaalaaaa@6705@

The phase constant is positive, as expected.

We can also calculate the angular wave number, k, by choosing another point on the figure. Let's choose x=5. y=10: 

10=10sin( k5+ π 6 ) 1=sin( 5k+ π 6 ) sin 1 ( 1 )=5k+ π 6 = 3π 2 5k= 3π 2 π 6 =( 18π 12 2π 12 ) k= π 5 ( 20 12 )= 2π 6 k= π 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaacaaIXa GaaGimaiabg2da9iaaigdacaaIWaGaci4CaiaacMgacaGGUbWaaeWa aeaacaWGRbGaeyyXICTaeyOeI0IaaGynaiabgUcaRmaalaaabaGaeq iWdahabaGaaGOnaaaaaiaawIcacaGLPaaaaeaacaaIXaGaeyypa0Ja ci4CaiaacMgacaGGUbWaaeWaaeaacqGHsislcaaI1aGaam4AaiabgU caRmaalaaabaGaeqiWdahabaGaaGOnaaaaaiaawIcacaGLPaaaaeaa ciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiabgkHiTiaaigdaaaGcda qadaqaaiaaigdaaiaawIcacaGLPaaacqGH9aqpcqGHsislcaaI1aGa am4AaiabgUcaRmaalaaabaGaeqiWdahabaGaaGOnaaaacqGH9aqpcq GHsisldaWcaaqaaiaaiodacqaHapaCaeaacaaIYaaaaaqaaiabgkHi TiaaiwdacaWGRbGaeyypa0JaeyOeI0YaaSaaaeaacaaIZaGaeqiWda habaGaaGOmaaaacqGHsisldaWcaaqaaiabec8aWbqaaiaaiAdaaaGa eyypa0JaeyOeI0YaaeWaaeaadaWcaaqaaiaaigdacaaI4aGaeqiWda habaGaaGymaiaaikdaaaGaeyOeI0YaaSaaaeaacaaIYaGaeqiWdaha baGaaGymaiaaikdaaaaacaGLOaGaayzkaaaabaGaam4Aaiabg2da9m aalaaabaGaeqiWdahabaGaaGynaaaadaqadaqaamaalaaabaGaaGOm aiaaicdaaeaacaaIXaGaaGOmaaaaaiaawIcacaGLPaaacqGH9aqpda WcaaqaaiaaikdacqaHapaCaeaacaaI2aaaaaqaaiaadUgacqGH9aqp daWcaaqaaiabec8aWbqaaiaaiodaaaaaaaa@906C@

We have the complete displacement equation:

y=10sin( π 3 x+ π 6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 da9iaaigdacaaIWaGaci4CaiaacMgacaGGUbWaaeWaaeaadaWcaaqa aiabec8aWbqaaiaaiodaaaGaamiEaiabgUcaRmaalaaabaGaeqiWda habaGaaGOnaaaaaiaawIcacaGLPaaaaaa@44C6@
The sample sine sinusoidal as a function of theta.

The sample sine sinusoidal as a function of theta.

We can check our work by evaluation displacement function a other points on the figure:

y=10sin( π 3 10+ π 6 )=10 y=10sin( π 3 20+ π 6 )=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG5b Gaeyypa0JaaGymaiaaicdaciGGZbGaaiyAaiaac6gadaqadaqaamaa laaabaGaeqiWdahabaGaaG4maaaacaaIXaGaaGimaiabgUcaRmaala aabaGaeqiWdahabaGaaGOnaaaaaiaawIcacaGLPaaacqGH9aqpcqGH sislcaaIXaGaaGimaaqaaiaadMhacqGH9aqpcaaIXaGaaGimaiGaco hacaGGPbGaaiOBamaabmaabaWaaSaaaeaacqaHapaCaeaacaaIZaaa aiaaikdacaaIWaGaey4kaSYaaSaaaeaacqaHapaCaeaacaaI2aaaaa GaayjkaiaawMcaaiabg2da9iaaiwdaaaaa@59BB@

They match, we can be confident in our answer.

We could also look at this as a change of variable problem.

What would the solution be if the sinusoidal function was a cosine function instead of the sine function?

Note: The arcsine function is a multi-value function. Be sure to understand why we choose 

sin 1 ( 1 )= 3π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaacaaI XaaacaGLOaGaayzkaaGaeyypa0JaeyOeI0YaaSaaaeaacaaIZaGaeq iWdahabaGaaGOmaaaaaaa@422A@

instead of one of the infinite other possibilities.

[1] Sullivan, Michael, and Michael Sullivan (III). 2012. “Graphing Techniques: Graph Functions Using Vertical and Horizontal Shifts.” In Algebra & Trigonometry Enhanced with Graphing Utilities, 6th ed., 244–47. Boston: Pearson Education. http://bit.ly/1OxChzf.