Propagation of Log Function Uncertainties
Bevington and Robinson (2002, 48) develop the propagation of uncertainties (errors) of multiple operations and functions. We provide the uncertainty propagation for a $\log_{10}$ function.
Starting from their general two variable formula $ y = f( u, v )$:
$$ \sigma_y^2 = \sigma_u^2 \left( \frac{\partial y}{\partial u} \right)^2 + \sigma_v^2 \left( \frac{\partial y}{\partial v} \right)^2 + 2\sigma_{uv}^2\left( \frac{\partial y}{\partial u} \right) \frac{\partial y}{\partial v} $$
Since $\log_{10}$ is a function of a single variable,
$$ \sigma_y^2 = \sigma_u^2 \left( \frac{d y}{du} \right)^2 $$
With $y = \log_{10}$ the derivitive of $y$ is
$$ \frac{d y}{du} = \frac{1}{u \ln(10)} $$
Yielding the propagation of the variance and standard deviation of the uncertainty of $y$ as:
$$ \sigma_y^2 = \sigma_u^2 \left( \frac{1}{u \ln(10)} \right)^2 $$
$$ \sigma_y = \sigma_u \left( \frac{1}{u \ln(10)} \right) $$
Let’s look at a counting experiment example.
$$ u = 736 \, \text{counts, } \sigma_u = \sqrt{u} = 27 $$
$$ y = \log_{10}( u ) = 2.87, \sigma_y = 0.02 $$
References
Bell, Stephanie. 1999
“Measurement Good Practice Guide No. 11 (Issue 2).” National Physical Laboratory. https://www.npl.co.uk/resources/gpgs/all-gpgs. https://www.npl.co.uk/special-pages/guides/gpg11_uncertainty.
Bevington, Philip R., and D. Keith Robinson. 2002
Data Reduction and Error Analysis for the Physical Sciences. 3rd ed. Science/Engineering/Math. Boston: McGraw-Hill. http://www.worldcat.org/oclc/865237466.
Kircher, Athanasius. 1679.
Coptic Letter Small Sigma. Image/png. File:Athanasius Kircher - Turris Babel - 1679 (page 232 crop - Coptic letter Sigma small).png. Wikimedia Commons, the Free Media Repository. https://upload.wikimedia.org/wikipedia/commons/2/2f/Athanasius_Kircher_-_Turris_Babel_-_1679_%28page_232_crop_-_Coptic_letter_Sigma_small%29.png.
Lenormand, Maxime, et al. 2012
“A Universal Model of Commuting Networks.” Edited by Renaud Lambiotte. PloS One 7 (October): e45985. https://doi.org/10.1371/journal.pone.0045985.